Pricing Energy Storage for Social-Welfare Maximization

Ning Qi, Ningkun Zheng, Bolun Xu

nq2176@columbia.edu

Columbia University, New York, USA

October 22, 2024

Name: Ning Qi Title: Postdoctoral Research Scientist Affiliation: Earth & Environmental Engineering, Columbia University Email: nq2176@columbia.edu Homepage: https://thuqining.github.io Research Interest: Data-Driven Modeling, Optimization under Uncertainty and Market Design for Power System with Generalized Energy Storage Resources

B.S. EE, Tianjin University, 2018 Prof. Yanxia Zhang

PhD. EE, Tsinghua University, 2023 Prof. Lin Cheng

Visiting Scholar, Technical University of Denmark, 2022

Imperial College London Prof. Pierre Pinson

University of Vermont Prof. Mads R. Almassalkhi

Research Associate, Tsinghua University, 2023 Prof. Feng Liu

Postdoc, Columbia University 2024 Prof. Bolun Xu

Group Member:

Ningkun (Nik) Zheng **Neal Ma Bolun** Xu

Group Homepage:

<https://bolunxu.github.io/>

Background—Role of Energy Storage

Background—Pricing of Energy Storage

Background—Pricing of Energy Storage

Large Storage: Capacity Withholding (Extreme High Bid: \$500-1000/MWh!)

Normal Price Day **Default Bid?** Price Spike Day

RTPD and IFM Charge/Discharge Proportions for January 16, 2024

 $-\cdot$ Avg Price Bin

 $\hspace{0.05cm}$ $\hspace{0.05cm}$ $\hspace{0.05cm}$ $\hspace{0.05cm}$
 – $\hspace{0.05cm}$ – $\hspace{0.05cm}$ Max Price Bin

 \longrightarrow Avg Price Bin

 $---$ Max Price Bin

 $\rm 0.5$

0.4

 $5\,0.3$

 ≈ 0.2

 0.1

 0.0

 0.0

 Ω .

 0.4

RTPD Discharge Bid Proportions

RTPD Chasge Bid Proportions

https://www.caiso.com/library/daily-energy-storage-reports

IFM Discharge Bid Proportions

IFM Charge Bid Proportions

1.50 (100 (20) (21) (21) (21) (21) (21) (20) (21) (21) (21)

 $-\cdot$ Avg Price Bin

 $---$ Max Price Bin

 $-\cdot$ Avg Price Bin

 $---$ Max Price Bin

Background—Pricing of Uncertainty

Deterministic Formulation

 $\min \sum_i [\sum_i G_i(g_{i,t}) + \sum_i M_s(p_{s,t})]$ $(1a)$ $[\lambda_t]:\sum_{i}g_{i,t}+\sum_{i}p_{s,t}-\sum_{i}b_{s,t}=D_t, \ \forall t\in\mathcal{T}$ **Energy Price** $[\theta_{s,t}]$: $e_{s,t+1} - e_{s,t} = -p_{s,t}/\eta_s + b_{s,t}\eta_s$, $\forall t \in \mathcal{T}$, $\forall s \in \mathcal{S}$ $(1c)$ $[\pi_t]: \sum_i \varphi_{i,t} + \sum_{s} \psi_{s,t} \geq d_t, \ \forall t \in \mathcal{T}$ **Reserve Price** $(1d)$ $[\underline{\nu}_{i,t}, \overline{\nu}_{i,t}]$: $\underline{G}_i \leq g_{i,t} \leq \overline{G}_i - \varphi_{i,t}$, $\forall t \in \mathcal{T}$, $\forall i \in \mathcal{G}$ $(1e)$ $[\kappa_{i,t}, \overline{\kappa}_{i,t}]$: $-RD_i \leq q_{i,t} - q_{i,t-1} \leq RU_i$, $\forall t \in \mathcal{T}$, $\forall i \in \mathcal{G}$ $(1f)$ $[\alpha_{s,t}, \overline{\alpha}_{s,t}]: 0 \leq b_{s,t} \leq \overline{P}_s, \forall t \in \mathcal{T}, \forall s \in \mathcal{S}$ $(1g)$ $[\beta_{s,t}, \overline{\beta}_{s,t}]$: $0 \leq p_{s,t} \leq \overline{P}_s - \psi_{s,t}, \forall t \in \mathcal{T}, \forall s \in \mathcal{S}$ $(1h)$ $[\underline{t}_{s,t}, \overline{t}_{s,t}]$: $(\psi_{s,t}+p_{s,t})/\eta_s+\underline{E}_s \leq e_{s,t},$ $(1i)$ $e_{s,t} \leq \overline{E}_s - b_{s,t} \eta_s, \forall t \in \mathcal{T}, \forall s \in \mathcal{S}$

- **Price and Dispatch Decoupled with Uncertainty**
- **Reserve Price≈0**,**Lose Profit for Reserve Provision**
- **Incorporate Uncertainty into Pricing and Dispatch**

Probabilistic Formulation

Stochastic Optimization

 \times Revenue adequacy and cost recovery for each scenario \times Scenario-Based Price, No Default Price \checkmark Market Analysis \times Market Clearning

Robust Optimization

 \checkmark Conservative

Chance-Constrained Optimization

- \checkmark Tractable
- \checkmark Scalable
- \checkmark Control the Risk

$$
\mathbb{P}\Big(a_i(\boldsymbol{x})^{\text{T}}\boldsymbol{\xi}(\boldsymbol{x})\!\leq\!b_i(\boldsymbol{x})\Big)\!\geq\!1\!-\!\epsilon
$$

[1] J. Kazempour, P. Pinson, and B. F. Hobbs, "A stochastic market design with revenue adequacy and cost recovery by scenario: Benefits and costs," *IEEE Transactions on Power Systems*, vol. 33, no. 4, pp.3531–3545, 2018.

[2] Y. Dvorkin, "A chance-constrained stochastic electricity market," *IEEE Transactions on Power Systems*, vol. 35, no. 4, pp. 2993–3003, 2019.

Problem Formulation & Preliminary

- Opportunity Pricing for Storage
- \checkmark Default Bid and Benchmark the Market Power of Storage

COLUMBIA FNGIN

Robust Competitive Equilibrium!

Theoretical Analysis

- **Proposition 1: Physical Cost Origins: (1) Marginal Cost of Cleared Generator & Storage (2) Storage Efficiency**
- $\theta_{s,t} = H_i(q_{i,t} + \varphi_{i,t}d_t)/\eta_s$ **Charging** $\partial \mathbb{E} G_i (q_{i,t} + \varphi_t \mathbf{d}_t) / \partial q_{i,t} = H_i (q_{i,t} + \varphi_{i,t} \mathbf{d}_t)$ $\theta_{s,t} = \eta_s (H_i (g_{i,t} + \varphi_{i,t} \boldsymbol{d}_t) - M_s)$ **Discharging**

Theorem: Constrained and Bounded Price

 $\begin{aligned} \theta_{s,t-1} &= \frac{\eta_s}{\widetilde{d}_t}\left(\theta_{s,t}\eta_s\widehat{d}_t + \lambda_t(\frac{\widetilde{d}_t}{\eta_s^2}-\widehat{d}_t) + \pi_t - M_s\mu_t\right) \\ \theta_{s,t-1} &= \frac{1}{\eta_s\widehat{d}_t}\Big(\frac{\theta_{s,t}\widetilde{d}_t}{\eta_s} + \lambda_t(\eta_s^2\widehat{d}_t - \widetilde{d}_t) + \pi_t + M_s\big(\widetilde{d}_t - \eta_s^2\widehat{d}_t - \mu_t\big)\Big) \end{aligned}$

- **Proposition 2: Convex Opportunity Price: Monotonically Decreases with Storage SoC**
- **Quadratic/Super-Quadratic SoC-Dependent Bid[1]** $\partial \theta_{s,t} / \partial e_{s,t} \leq 0$ **Generation Cost Function**
- **Proposition 3: Uncertainty-aware Price: Monotonically Increases with Uncertainty**

 $\partial \theta_{s,t}/\partial \sigma_t \geq 0$

Quadratic/Super-Quadratic Generation Cost Function

- $\mathbb{E}(\theta_{s,t}(\boldsymbol{d_t})) > \theta_{s,t}(\mathbb{E}(\boldsymbol{d_t}))$
	- **Uncertainty-Aware and Bounded Bid[2]**
	- **Linear Relationship with Energy and Reserve Price**

[1] N. Zheng, X. Qin, D. Wu, G. Murtaugh and B. Xu, "Energy Storage State-of-Charge Market Model," *IEEE Transactions on Energy Markets, Policy and Regulation*, vol. 1, no. 1, pp. 11-22, March 2023. [2] Q., Xin, I. Lestas, and B. Xu. "Economic Capacity Withholding Bounds of Competitive Energy Storage Bidders." *arXiv preprint* arXiv:2403.05705 (2024).

Charging

Discharging

8 | *Transcending Disciplines, Transforming Lives, Educating Leaders*

Case Study—Test System

ISO-NE 8-Zone Test System

- **76 Generators: 23.1 GW**
- **Load: 13 GW**
- **Renewables: Wind and Solar^[1], 10%-90% of Total Generation Capacity**
- **Uncertainty: Elia Historical Data[2]**
- **Multiple Storages: 10%-60% of Total Generation Capacity; 4-8-12 hr duration; 0.8, 0.85, 0.9, 0.95 One-Way Efficiency**
- **Coding[3]: MatLab and solved by Gurobi 11.0 solver, Intel Corei9- 13900HX @ 2.30GHz with RAM 16 GB.**

[1] D. Krishnamurthy, W. Li, and L. Tesfatsion, "An 8-zone test systembased on iso new england data: Development and application," *IEEE Transactions on Power Systems*, vol. 31, no. 1, pp. 234–246, 2015 [2] Elia, "Forecast error data from elia," 2024. [Online]. Available:https://www.elia.be/en/grid-data.

[3] Code and Data: https://github.com/thuqining/Storage_Pricing_for_Social_Welfare_Maximization

Case Study—Simulation Results

- **Convex Opportunity Price Function** *θ***(SoC) Monotonically Decreasing**
- **Higher Efficiency: Higher Discharge Price, Lower Charge Price**

Case Study—Simulation Results

- **Uncertainty-Aware Price Function** *θ***(σ)**
- **Proposed Formulation: Monotonically Increasing**
- **Deterministic Formulation: Fixed**

Constrained and bounded Price

Anticipated Default Bid

 \mathbb{G}^* COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

11 | *Transcending Disciplines, Transforming Lives, Educating Leaders*

- **Benchmark Comparison**
- **Storage Profit Maximization**^[1,2]

 $V_{t-1}(e_{t-1}) = \max_{p_t, b_t} \lambda_t(p_t - b_t) - M p_t + V_t(e_t)$ **Opportunity Value Function** $e_{t+1} - e_t = -p_t/\eta + b_t \eta$ $0 \leq b_t \leq \overline{P}$, $0 \leq p_t \leq \overline{P}$ $0 \leq e_t \leq \overline{E}$ $p_t=0, \lambda_t<0$ $O_t(p_t) = \frac{\partial (Mp_t + V_t(e_t))}{\partial p_t} = M + \frac{1}{\eta} v_t (e_{t-1} - p_t/\eta)$ **Storage Bid** $B_t(b_t) = \frac{\partial (V_t(e_t))}{\partial b_t} = \eta v_t (e_{t-1} + b_t \eta)$ $\min \sum_i \sum_t G(g_{i,t}) + O_t(p_t) - B_t(b_t)$ **Market Clearing**

[1] X. Qin, I. Lestas, and B. Xu, "Economic capacity withholding bounds of competitive energy storage bidders," arXiv preprint arXiv:2403.05705,2024

[2] N. Zheng, X. Qin, D. Wu, G. Murtaugh and B. Xu, "Energy Storage State-of-Charge Market Model," IEEE Transactions on Energy Markets, Policy and Regulation, vol. 1, no. 1, pp. 11-22, March 2023.

- **Enhance social welfare, reduce conventional generator production and consumer payment; Sacrifice storage margins**
- **Electricity Payment Decrease by 17%**
- **Storage Profit Reduces by 0.5% (based on Electricity Payment)**

- **Benefit Scales Up with Increased Renewable & Storage Integration**
- **Sensitivity Analysis of Storage Capacity**
- **4-hr storage: 20% storage capacity (-18%)**

60% storage capacity (-27%)

 20% storage capacity: 4-hr storage (-18%)

12-hr storage (-23%)

- **Sensitivity Analysis of Renewable Capacity**
	- **30% renewable capacity (-18%)**

50% renewable capacity (-21%)

70% renewable capacity (-22%)

■ Uncertainty Realization & Risk-Aversion | ■ More Risk-Aversion→Higher Cost & Prices

(1) Normal Distribution

 $F^{-1}(1-\epsilon)=\Phi^{-1}(1-\epsilon)$

(2) Distributionally Robust

(3) Versatile Distribution[1]

[1] Z.-S. Zhang, Y.-Z. Sun, D. W. Gao et al., "A versatile probabilitydistribution model for wind power forecast errors and its applicationin economic dispatch," IEEE Transactions on Power Systems, vol. 28,no. 3, pp. 3114–3125, 2013.

 Versatile Distribution Best Fits the Netload Forecast Error

Compared with Empirical Result Lower RMSE: Better Fitting

Computational Efficiency

Time1: Complementary Constraints to Prevent Storage from Simultaneous Charging and Discharging Time2: Relaxation of Complementary Constraints[1] $\mathbf{0} \leq \mathbf{1}_T E_0 + \eta_c \mathbf{A} \mathbf{P}_c - \frac{1}{\mathbf{A}} \mathbf{P}_d$

$$
\mathbf{E}^{r}(\mathbf{P}_{c}^{r}, \mathbf{P}_{d}^{r}) = \mathbf{1}_{T}E_{0} + \eta_{c}\mathbf{A}\mathbf{P}_{c}^{r} - \frac{1}{\eta_{d}}\mathbf{A}\mathbf{P}_{d}^{r}
$$
\n
$$
\mathbf{E}_{\text{max}} \geq \mathbf{1}_{T}E_{0} + \eta\mathbf{A}(\mathbf{P}_{c} - \mathbf{P}_{d})
$$
\n
$$
0 \leq \mathbf{P}_{c} \leq \mathbf{1}_{T}P_{\text{max}}
$$
\n
$$
0 \leq \mathbf{P}_{d} \leq \mathbf{1}_{T}P_{\text{max}}
$$
\n
$$
\mathbf{P}_{c} + \mathbf{P}_{d} \leq \mathbf{1}_{T}P_{\text{max}}
$$

[1] N. Nazir and M. Almassalkhi, "Guaranteeing a physically realizable battery dispatch without charge-discharge complementarity constraints*," IEEE Transactions on Smart Grid*, vol. 14, no. 3, pp. 2473–2476, 2021.

Conclusion & Future Work

- **Two-Stage Chance-Constrained Pricing Framework—Default Bid, Benchmark Market Power of Storage, Integrated into Current Economic Dispatch**
- **Theoretical Analysis: Convex, Uncertainty-Aware, Bounded and Anticipated**
- **Simulations: Significantly Enhance Social Welfare!—CASIO[1]**
- **? Long-Duration Storage—Track the Seasonal Pattern[3]**

[1]<https://www.caiso.com/notices/new-initiative-storage-bid-cost-recovery-and-default-energy-bids-enhancements-workshop-call-on-7-8-24> [2] N. Qi, N. Zheng, and B. Xu. "Chance-constrained energy storage pricing for social welfare maximization." arXiv preprint arXiv:2407.07068. [3] N. Qi, K. Huang, Z. Fan, and B. Xu. "Long-term energy management for microgrid with hybrid hydrogen-battery energy storage: A prediction-free coordinated optimization framework." Applied Energy 377 (2025): 124485.

Thank You!

Ning Qi

nq2176@columbia.edu

Columbia University, New York, USA

October 22, 2024

Theoretical Analysis—Deterministic Framework

$$
\min \sum_{t} \left[\sum_{i} G_{i}(g_{i,t}) + \sum_{s} M_{s}(p_{s,t}) \right]
$$
(1a)
\n
$$
[\lambda_{t}] : \sum_{i} g_{i,t} + \sum_{s} p_{s,t} - \sum_{s} b_{s,t} = D_{t}, \forall t \in \mathcal{T}
$$
(1b)
\n
$$
[\theta_{s,t}] : e_{s,t+1} - e_{s,t} = -p_{s,t}/\eta_{s} + b_{s,t}\eta_{s}, \forall t \in \mathcal{T}, \forall s \in \mathcal{S}
$$
(1c)
\n
$$
[\pi_{t}] : \sum_{i} \varphi_{i,t} + \sum_{s} \psi_{s,t} \geq d_{t}, \forall t \in \mathcal{T}
$$
(1d)
\n
$$
[\underline{\nu}_{i,t}, \overline{\nu}_{i,t}] : \underline{G}_{i} \leq g_{i,t} \leq \overline{G}_{i} - \varphi_{i,t}, \forall t \in \mathcal{T}, \forall i \in \mathcal{G}
$$
(1e)
\n
$$
[\underline{\kappa}_{i,t}, \overline{\kappa}_{i,t}] : -RD_{i} \leq g_{i,t} - g_{i,t-1} \leq RU_{i}, \forall t \in \mathcal{T}, \forall i \in \mathcal{G}
$$
(1f)
\n
$$
[\underline{\alpha}_{s,t}, \overline{\alpha}_{s,t}] : 0 \leq b_{s,t} \leq \overline{P}_{s}, \forall t \in \mathcal{T}, \forall s \in \mathcal{S}
$$
(1g)
\n
$$
[\underline{\beta}_{s,t}, \overline{\beta}_{s,t}] : 0 \leq p_{s,t} \leq \overline{P}_{s} - \psi_{s,t}, \forall t \in \mathcal{T}, \forall s \in \mathcal{S}
$$
(1h)
\n
$$
[\underline{\iota}_{s,t}, \overline{\iota}_{s,t}] : (\psi_{s,t} + p_{s,t})/\eta_{s} + \underline{E}_{s} \leq e_{s,t},
$$
(1i)
\n
$$
e_{s,t} \leq \overline{E}_{s} - b_{s,t}\eta_{s}, \forall t \in \mathcal{T}, \forall s \in \mathcal{S}
$$

Deterministic Formulation • Proposition 1: Physical Cost Origins: (1) Marginal Cost of Cleared Generator & Storage (2) Storage Efficiency

> $\theta_{s,t} = H_i(g_{i,t})/\eta_s$ **Charging**

 $\theta_{s,t} = \eta_s (H_i(g_{i,t}) - M_s)$ **Discharging**

 Proposition 2: Convex Opportunity Price: Monotonically Decreases with Storage SoC

Quadratic/Super-Quadratic $\partial \theta_{s,t}/\partial e_{s,t} \leq 0$ **Generation Cost Function**

Theorem: Constrained and Bounded Price

$$
\begin{aligned} & \theta_{s,t} \!\geq \! \eta_s(\lambda_t \!-\! \pi_t \!-\! M_s), \, \theta_{s,t-1} \!=\! \lambda_t/\eta_s \!+\! \pi_t \eta_s \qquad \quad \textbf{Charging} \\ & \theta_{s,t} \!=\! \eta_s(\lambda_t \!-\! \pi_t \!-\! M_s), \, \theta_{s,t-1} \!\leq\! \lambda_t/\eta_s \!+\! \pi_t \eta_s \qquad \quad \textbf{Discharging} \end{aligned}
$$

×**Uncertainty-aware Price**

Chance-constrained optimization

Deterministic Reformulation

$$
\frac{\mathbb{P}\big(a_i(\boldsymbol{x})^{\text{T}}\boldsymbol{\xi} \le b_i(\boldsymbol{x})\big) \ge 1 - \epsilon}{a_i(\boldsymbol{x})^{\text{T}}\boldsymbol{\mu} + b_i(\boldsymbol{x}) + \boxed{F^{-1}(1 - \epsilon)}\sqrt{a_i(\boldsymbol{x})^{\text{T}}\boldsymbol{\Sigma}a_i(\boldsymbol{x})} \le 0}
$$

(1) Gaussion Distribution

 $F^{-1}(1-\epsilon) = \Phi^{-1}(1-\epsilon)$

(2) Distributionally Robust[1]

(3) Versatile Distribution[2]

$$
F^{-1}(1-\epsilon\mid a,b,c)=c-\ln\Bigl((1-\epsilon)^{-1/b}-1\Bigr)/a
$$

(4) Data-Driven Distributionally Robust[3]

$$
a_i(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\mu}(\boldsymbol{x}) + F_{\boldsymbol{x}}^{-1} (1 - \epsilon) \sqrt{a_i(\boldsymbol{x})^{\mathrm{T}} \Sigma(\boldsymbol{x}) a_i(\boldsymbol{x})} \le b_i(\boldsymbol{x})
$$

\n
$$
a_i(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\mu}(\boldsymbol{x}) + \psi_K \boldsymbol{r}(\boldsymbol{x}) + \pi_K \overline{F}_{\boldsymbol{x}}^{-1} (1 - \epsilon) \|\boldsymbol{y}\|_2 \le b_i(\boldsymbol{x})
$$

\n
$$
\sqrt{a_i(\boldsymbol{x})^{\mathrm{T}} \Sigma a_i(\boldsymbol{x})} \le y_1, \sqrt{2 \psi_K} \boldsymbol{r}(\boldsymbol{x}) \le y_2
$$

\n
$$
\psi_K = K^{(1/p - 1/2)}
$$

$$
\pi_K = \left(1 - \frac{4}{\epsilon} \exp\left(-\left(K^{1/p} - 2\right)^2 / 2\right)\right)^{-1/2}
$$

[1] N. Qi, P. Pinson, M. R. Almassalkhi, et al., "Chance-constrained generic energy storage operations under decision-dependent uncertainty," IEEE Transactions on Sustainable Energy, vol. 14, no. 4, pp. 2234–2248, 2023.

PDF

[2] Z.-S. Zhang, Y.-Z. Sun, D. W. Gao et al., "A versatile probability distribution model for wind power forecast errors and its applicationin economic dispatch," IEEE Trans. on Power Systems, vol. 28,no. 3, pp. 3114–3125, 2013.

[3] N. Qi, P. Pinson, M. R. Almassalkhi, et al., "Capacity Credit Evaluation of Generalized Energy Storage Considering Endogenous Uncertainty," IEEE Trans. on Power Systems (second review).

NVD 2

IVD₁

 -0.1

IVD₃

IVD 0.1

PDH VMD · IVD 1 $IVD₂$

 \cdot IVD 3

· IVD 4

 0.2