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Background—Role of Energy Storage
Power Supply-Demand Balance
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Background—Pricing of Energy Storage

Conventional Generator VS

Market Design

Energy Storage

Bid： Marginal Cost Opportunity Cost

Bid Generation： Fuel Cost Curve Price Prediction based 
on Private Model

Market Clearing: Marginal Energy Price No Default Bid or Price
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Background—Pricing of Energy Storage

Large Storage: Capacity Withholding (Extreme High Bid: $500-1000/MWh!)

Normal Price Day Price Spike Day

https://www.caiso.com/library/daily-energy-storage-reports

Default Bid?
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Background—Pricing of Uncertainty
Deterministic Formulation

 Stochastic Optimization

Energy Price

Reserve Price

Probabilistic Formulation

 Price and Dispatch Decoupled with Uncertainty
 Reserve Price≈0，Lose Profit for Reserve Provision
 Incorporate Uncertainty into Pricing and Dispatch

 Robust Optimization

×Revenue adequacy and cost recovery for each scenario
×Scenario-Based Price, No Default Price
 Market Analysis ×Market Clearning

 Conservative
 Chance-Constrained Optimization

 Tractable
 Scalable
 Control the Risk

[1] J. Kazempour, P. Pinson, and B. F. Hobbs, “A stochastic market design with revenue adequacy and cost recovery by scenario: Benefits and costs,” IEEE Transactions on Power Systems, 
vol. 33, no. 4, pp.3531–3545, 2018.
[2] Y. Dvorkin, “A chance-constrained stochastic electricity market,” IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2993–3003, 2019.
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Problem Formulation & Preliminary
Two-Stage Chance-Constrained Economic Dispatch

 Opportunity Pricing for Storage
 Default Bid and Benchmark the Market Power of Storage

 First-Stage: Pre-dispatch 
 Second-Stage: Re-dispatch

Energy Price

Storage Price

Reserve Cost

Deterministic Reformulation

Chance-
Constraints

Expectation

Complementary 
Constraints  Solve MILP with Binary Variables

 Substitute Binary Variables with Solution
 Resolve LP

Robust Competitive Equilibrium！
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Theoretical Analysis
 Proposition 1: Physical Cost Origins: (1) Marginal Cost of Cleared Generator & Storage (2) Storage Efficiency  

Charging

Discharging

 Proposition 2: Convex Opportunity Price:  Monotonically Decreases with Storage SoC 

Quadratic/Super-Quadratic 
Generation Cost Function

 Proposition 3: Uncertainty-aware Price: Monotonically Increases with Uncertainty
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 Theorem: Constrained and Bounded Price

[1] N. Zheng, X. Qin, D. Wu, G. Murtaugh and B. Xu, "Energy Storage State-of-Charge Market Model," IEEE Transactions on Energy Markets, Policy and Regulation, vol. 1, no. 1, pp. 11-22, March 2023.
[2] Q., Xin, I. Lestas, and B. Xu. "Economic Capacity Withholding Bounds of Competitive Energy Storage Bidders." arXiv preprint arXiv:2403.05705 (2024).

SoC-Dependent Bid[1]

Uncertainty-Aware and 
Bounded Bid[2]

Charging

Discharging

Linear Relationship with 
Energy and Reserve Price

Quadratic/Super-Quadratic 
Generation Cost Function
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Case Study—Test System
 ISO-NE 8-Zone Test System

 76 Generators:  23.1 GW
 Load: 13 GW
 Renewables: Wind and Solar[1], 10%-90% of Total Generation Capacity
 Uncertainty: Elia Historical Data[2]

 Multiple Storages: 10%-60% of Total Generation Capacity; 4-8-12 hr
duration;  0.8, 0.85, 0.9, 0.95 One-Way Efficiency

 Coding[3]: MatLab and solved by Gurobi 11.0 solver, Intel Corei9-
13900HX @ 2.30GHz with RAM 16 GB.

[1] D. Krishnamurthy, W. Li, and L. Tesfatsion, “An 8-zone test systembased on iso new england data: Development and application,” IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 234–246, 2015
[2] Elia, “Forecast error data from elia,” 2024. [Online]. Available:https://www.elia.be/en/grid-data.
[3] Code and Data: https://github.com/thuqining/Storage_Pricing_for_Social_Welfare_Maximization
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Case Study—Simulation Results
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Case Study—Simulation Results
 Uncertainty-Aware Price Function θ(σ)
 Proposed Formulation: Monotonically Increasing
 Deterministic Formulation: Fixed
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Case Study—Comparative Results
 Benchmark Comparison
 Storage Profit Maximization[1,2]

Opportunity 
Value Function

Storage Bid

Market Clearing

[1] X. Qin, I. Lestas, and B. Xu, “Economic capacity withholding bounds of competitive energy 
storage bidders,” arXiv preprint arXiv:2403.05705,2024
[2] N. Zheng, X. Qin, D. Wu, G. Murtaugh and B. Xu, "Energy Storage State-of-Charge Market 
Model," IEEE Transactions on Energy Markets, Policy and Regulation, vol. 1, no. 1, pp. 11-22, 
March 2023.
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 Enhance social welfare, reduce conventional generator 
production and consumer payment; Sacrifice storage margins

 Electricity Payment Decrease by 17%
 Storage Profit Reduces by 0.5% (based on Electricity Payment) 
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Case Study—Comparative Results

 Sensitivity Analysis of Storage Capacity

Benefit Scales Up with Increased Renewable & Storage Integration

 4-hr storage: 
20% storage capacity (-18%)

60% storage capacity (-27%)

 20% storage capacity: 
4-hr storage (-18%)

12-hr storage (-23%)

 Sensitivity Analysis of Renewable Capacity

 30% renewable capacity (-18%)

 50% renewable capacity (-21%)

 70% renewable capacity (-22%)
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Case Study—Comparative Results
Uncertainty Realization & Risk-Aversion  More Risk-Aversion→Higher Cost & Prices

 Versatile Distribution Best Fits the Netload 
Forecast Error 

Compared with 
Empirical Result
Lower RMSE: Better 
Fitting

(1) Normal Distribution

(2) Distributionally Robust

(3) Versatile Distribution[1]

[1] Z.-S. Zhang, Y.-Z. Sun, D. W. Gao et al., “A versatile probabilitydistribution
model for wind power forecast errors and its applicationin economic dispatch,” 
IEEE Transactions on Power Systems, vol. 28,no. 3, pp. 3114–3125, 2013.
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Time1: Complementary Constraints to Prevent Storage from Simultaneous Charging and Discharging 
Time2: Relaxation of Complementary Constraints[1]

[1] N. Nazir and M. Almassalkhi, “Guaranteeing a physically realizable battery dispatch without charge-discharge complementarity 
constraints,” IEEE Transactions on Smart Grid, vol. 14, no. 3, pp. 2473–2476, 2021.

Generator
Number 1 76 76 76 76 76 76 76 76 76

Storage 
Number 1 1 5 10 50 100 500 1000 5000 10000

Time1 (s) 0.08 0.42 0.57 0.78 5.63 11.86 370.00 424.45 >3000 >3000

Time2 (s) 0.04 0.35 0.46 0.59 0.74 1.16 2.85 5.32 33.34 72.60 Scalable!

Case Study—Comparative Results
Computational Efficiency



16 | Transcending Disciplines, Transforming Lives, Educating Leaders16

[1] https://www.caiso.com/notices/new-initiative-storage-bid-cost-recovery-and-default-energy-bids-enhancements-workshop-call-on-7-8-24
[2] N. Qi, N. Zheng, and B. Xu. "Chance-constrained energy storage pricing for social welfare maximization." arXiv preprint arXiv:2407.07068.

 Two-Stage Chance-Constrained Pricing Framework—Default Bid, Benchmark 
Market Power of Storage, Integrated into Current Economic Dispatch

 Theoretical Analysis: Convex, Uncertainty-Aware, Bounded and Anticipated
 Simulations: Significantly Enhance Social Welfare!—CASIO[1] 

Conclusion & Future Work
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[3] N. Qi, K. Huang, Z. Fan, and B. Xu. "Long-term energy management for microgrid with hybrid hydrogen-battery energy storage: A 
prediction-free coordinated optimization framework." Applied Energy 377 (2025): 124485.
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Theoretical Analysis—Deterministic Framework
Deterministic Formulation  Proposition 1: Physical Cost Origins: (1) Marginal Cost of 

Cleared Generator & Storage (2) Storage Efficiency  

 Proposition 2: Convex Opportunity Price:  
Monotonically Decreases with Storage SoC 

 Theorem: Constrained and Bounded Price

×Uncertainty-aware Price

Charging

Discharging

Charging

Discharging

Quadratic/Super-Quadratic 
Generation Cost Function
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Chance-constrained optimization

(2) Distributionally Robust[1]

(3) Versatile Distribution[2]

(1) Gaussion Distribution

[1] N. Qi, P. Pinson, M. R. Almassalkhi, et al., “Chance-constrained generic energy storage 
operations under decision-dependent uncertainty,” IEEE Transactions on Sustainable Energy, vol. 14, 
no. 4, pp. 2234–2248, 2023.
[2] Z.-S. Zhang, Y.-Z. Sun, D. W. Gao et al., “A versatile probability distribution model for wind 
power forecast errors and its applicationin economic dispatch,” IEEE Trans. on Power Systems, vol. 
28,no. 3, pp. 3114–3125, 2013.
[3] N. Qi, P. Pinson, M. R. Almassalkhi, et al., “Capacity Credit Evaluation of Generalized Energy 
Storage Considering Endogenous Uncertainty,” IEEE Trans. on Power Systems (second review).

(4) Data-Driven Distributionally Robust[3]

Deterministic Reformulation
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